
CS487 - Symbolic Computation

University of Waterloo

Nicholas Pun

Winter 2020

Contents

1 Introduction 4
1.1 Course Preview . 4
1.2 Representation of Integers . 5
1.3 Addition of Integers . 5

2 Complexity of Arithmetic Operations 7
2.1 Näıve upper bounds on costs . 7

2.1.1 Addition . 7
2.1.2 Multiplication . 8
2.1.3 Division with Remainder . 8

2.2 Multimodular Reduction . 8

3 Extended Euclidean Algorithm 10
3.1 Definitions . 10
3.2 Extended Euclidean Algorithm . 10
3.3 Correctness . 12
3.4 Cost Analysis . 13
3.5 Applications of the EEA . 13

4 Polynomial Evaluation and Multiplication 15
4.1 Polynomial Evaluation . 15

4.1.1 Näıve Algorithm . 15
4.1.2 Horner’s Scheme . 15
4.1.3 Non-scalar Complexity Model . 15
4.1.4 Baby-Steps/Giant-Steps Method (By Patterson and Stockmeyer) . . 16

4.2 Polynomial Multiplication . 17
4.2.1 Divide-and-Conquer Approach . 17
4.2.2 Karatsuba’s Algorithm . 18

4.3 Aside: Circuit Representations . 18

5 Polynomial Multiplication using Lagrange Interpolation, Vandermonde
Matrix 20
5.1 Polynomial Multiplication using Lagrange Interpolation 20
5.2 A Slight Detour: The Vandermonde Matrix 21

5.2.1 Polynomial Evaluation . 22
5.2.2 Polynomial Interpolation . 22

5.3 Another View on Polynomial Multiplication 22
5.4 Choosing “Good” Evaluation Points . 23

6 Discrete Fourier Transform and Fast Fourier Transform 25
6.1 Discrete Fourier Transform . 25
6.2 Fast Fourier Transform . 26

1

6.3 Polynomial Multiplication using the FFT . 28

7 Fast Division with Remainder and Newton Iteration 30
7.1 Fast Division with Remainder . 30

7.1.1 Reversions . 30
7.1.2 Back to Fast Division . 31

7.2 Newton Iteration . 31
7.3 Completing Fast Division with Remainder 33
7.4 Concluding Remarks . 33

8 Newton Iteration for Integers and padic Inversion 35

9 Chinese Remainder Algorithm 36
9.1 Variations to Chinese Remaindering . 38

9.1.1 Incremental Chinese Remaindering 38
9.1.2 Mixed Radix Representation . 38

Appendices 39

A Multiplication Time 39

References 41

2

List of Algorithms
1 Extended Euclidean Algorithm . 12
2 Näıve Algorithm . 15
3 Baby-Steps/Giant-Steps Method . 17
4 Polynomial Multiplication using Lagrange Interpolation 21
5 Fast Fourier Transform (FFT) . 28
6 Quadratic Newton Iteration . 32
7 Fast Division with Remainder . 33
8 Chinese Remainder Algorithm . 37

3

Lecture 1: Introduction

1.1 Course Preview

Example 1.1: (Simplyfying Rational Expressions)

Suppose we have the two following expressions:

f :=
x+ 1

x− 1
− x3 − 2x+ x2 + 2

x3 + 2x− x2 − 2
+
x2 + 3

x− 1
(1.1)

g :=
(x− 1)2 − x2 − x+ 2x

(x+ y + 2)100
(1.2)

Question: How do we simplify these expressions to a single poly
poly

or return that it is 0?

One idea: Define a “normal” function:

1. If expression is 0, the normal function will be 0

2. If not, the normal function will be the simplest form

(More) Questions: What else do we need to consider?

• How do we represent polynomials (i.e. What data structure do we use?)

• How do we perform polynomial operations computationally?

• Do we need to consider the size of the integers in our computations?

Example 1.2: (Solving Recurrences)

Suppose we have the recurrence:

T (n) =

{
2T (n

2
) + n

2
n > 1

1 n = 1

We can solve this by hand (using Master theorem or other techniques) to obtain the
answer:

T (n) = n(1 + log2(n))

Question: How do we do this computationally?

4

Example 1.3

Consider the following identities:

n∑
k=0

k =
n(n− 1)

2
(1.3)

n∑
k=0

k4 =
n(n− 1)(2n− 1)(3n3 − 3n− 1)

30
(1.4)

Question: Can we return a closed form (without involving the index k) for any general
expression or report that one doesn’t exist?

1.2 Representation of Integers

Current computers are based on architecture with 64 bits (We will call this number of bits
the word size)

Example 1.4

The unsigned long in C represents integers in exactly the range [0, 264 − 1]

Question: How do we represent larger numbers?

Idea. Use an array of word size numbers.

Any integer a can be expressed as the following summation:

a = (−1)s
n∑

i=0

ai2
64i

where s ∈ {0, 1} represents the sign of a and 0 ≤ ai ≤ 264 − 1 are the individual elements in
the array.

If we assume 0 ≤ n+ 1 ≤ 263, then we can encode a as an array:

[s · 263 + n+ 1, a0, a1, . . . , an]

This is sufficient for all practical purposes.

Note. The length of a is given by: blog264 |a|c+ 1 ∈ O (log |a|) words

1.3 Addition of Integers

Suppose our input is a : a0 + a1β + a2β
2 + . . . anβ

n and b : b0 + b1β + b2β
2 + . . . bmβ

m (where
m ≤ n). Let c = a + b = c0 + c1β + c2β

2 + . . . cnβ
n, each ci = ai + bi if i ≤ m and ci = ai

5

otherwise.

ai + bi may be greater than β. In this case, the addition creates a carry to the (i + 1)-th
term.

Question: How large can c get?

In particular, will our array drastically change in size?

We can begin with the case of β = 2. This gives us binary strings, a case we may be familiar
with. We can simply every bit equal to 1 to obtain:

1 + 1 · 2 + 1 · 22 + . . .+ 1 · 2m = 2m+1 − 1

For general β this suggests the following:

m∑
i=0

= (β − 1)βi = βm+1 − 1 (1.5)

So, given two equal length (array-wise) integers a, b:

(a0 + a1β + . . .+ amβ
m) + (b0 + b1β + . . .+ bmβ

m) ≤ 2(βm+1 − 1)

= (βm+1 − 2) + βm+1

This implies that the largest the carry bit can be is 1.

6

Lecture 2: Complexity of Arithmetic Operations

We want to talk about basic operations (i.e. {+,−,×,÷}) over a ring. (Note: Division may
not always be possible)

Example 2.1: (Rings)

The following rings will come up:

1. Integers (Z)

2. Rationals (Q)

3. Fields (E.g. Z7)

4. Polynomial Rings (R[x]), where R is any commutative ring. E.g. Z[x],Q[x],Zp[x]

5. Field of rational functions (R(x)). E.g. Q(x)

2.1 Näıve upper bounds on costs

For polynomials, we are interested in a, b ∈ R[x]. We will let n = deg(a), m = deg(b) and
we will count ring operations from R.

For integers, we will count bit operations.

We’ll also define the following operation: for a ∈ Z, lg a =

{
1 if a = 0

1 + blog2 |a|c if a 6= 0

The following table summarizes the upper bounds:

Operation Polynomials Integers
a+ b n+m+ 1 lg a+ lg b
a− b n+m+ 1 lg a+ lg b
a× b (n+ 1)(m+ 1) (lg a)(lg b)

a = qb+ r (n−m+ 1)(m+ 1) (lg a
b
)(lg b)

2.1.1 Addition

a0 + a1x+ . . .+ amx
m+ am+1x

m+1 + . . .+ anx
n

b0 + b1x+ . . .+ bmx
m

c0 + c1x+ . . .+ cmx
m+ cm+1x

m+1 + . . .+ cnx
n

While we really only add the first m+ 1 terms, the add operation returns a new polynomial
c. As such, we really perform max{m,n}+ 1 ∈ Θ(n+m) + 1 operations.

The same analysis can be used for the add operation on integers.

7

2.1.2 Multiplication

Consider a =
∑n aix

i, b =
∑m bix

i, and c = a× b =
∑n+m ckx

k, where ck =
∑
aibj.

Classical “school” method: Cost is (n+1)(m+1) multiplications and nm additions (exactly).

2.1.3 Division with Remainder

Given a, b ∈ Z (or R[x]), we want to find q, r ∈ Z with size(r) < size(b) so that a = bq + r.
Note that: size(·) for integers is just the magnitude, and for polynomials, size(r) = deg(r)

We will require that for polynomials a, b, in a ÷ b, the constant term of b is a unit (and so
an inverse exists)

Doing long division results in something that will look like the drawing below:

Within the shaded region of the trapezoid, no changes are made to the polynomial. In each
step of the long division, we only perform changes to m terms within the unshaded band in
the trapezoid. There are a total of n−m steps (This is the resulting degree of q).

So, in total, long division of polynomials can be done in O((m+ 1)(n−m+ 1)) operations.

Note. Why do we not just reuse our subtraction operation? We want this division operation
to be primitive. The operation only performs ring operations as needed.

The same analysis can be performed on long division of integers.

2.2 Multimodular Reduction

Suppose a ∈ Z, p1, . . . , pk ∈ Z>1, with a < p := p1 . . . pk. What is cost of computing a
mod p1, a mod p2, . . ., a mod pk? (i.e. Obtaining the remainders)

8

Rough Bound: We can use the division with remainder operation. Both a and the pi’s are
bounded by p. Since there are k pi’s, we will perform the operation at most k times. This
gives the bound O(k(lg p)2)

But, of course we can be more accurate with this bound. In total, the k division with

remainders require
∑k

i=1C
(

lg a
pi

)
(lg p) operations (The C comes from the big-O of the

division with remainder operation). We get:

k∑
i=1

C

(
lg
a

pi

)
(lg p)

= C
k∑

i=1

(
lg
a

pi

)
(lg p)

≤ C (lg p)
k∑

i=1

(lg p) (lg
a

pi
≤ lg a ≤ lg p)

≤ C(1 + log p)
k∑

i=1

(1 + log p) (Get rid of the lg)

≤ C(2 log p)
k∑

i=1

(2 log p) (If x > 1, 1 + log x ≤ 2 log x)

= 4C(log p)2

9

Lecture 3: Extended Euclidean Algorithm

3.1 Definitions

Went over definitions of: units, associates, zero divisors, integral domain, GCD, LCM, and
Euclidean domain.

Note.

• On GCDs and LCMs: Often convenient to define them to be nonnegative to make
them unique

• On a = qb + r, the quotient and remainder are not necessarily unique over Z. (e.g.
7 = 5 · 1 + 2 = 5 · 2− 3). However, over R = F[x] (F field), the quotient and remainder
are unique.

3.2 Extended Euclidean Algorithm

Input: a, b ∈ R, b 6= 0, R Euclidean Domain (e.g. R = Z or R = F[x])

Output: s, t, g ∈ R such that sa+ tb = g, where g = gcd(a, b)

Example 3.1

One may recall the algorithm from MATH135 which begins with the following table:

s t r q
1 0 a 0
0 1 b 0

At each step of the algorithm, we perform the operation: Rowi+1 ← Rowi−1− qiRowi,
where qi = b ri

ri−1
c. And we stop once the remainder is 0 and our answer can be read

from the second last row.

For example, we can find gcd(91, 63):

s t r q
1 0 91 0
0 1 63 0
1 −1 28 1
−2 3 7 2
9 −13 0 4

So, (−2)(91) + 3(63) = 7

Note. Behind the operation Rowi+1 ← Rowi−1 − qiRowi, we are really performing the 3
operations:

10

1. ri+1 ← ri−1 − qiri
2. si+1 ← si−1 − qisi
3. ti+1 ← ti−1 − qiti

We build our way towards a matrix formulation of the algorithm. Consider the matrix:

Qi =

[
0 1
1 −qi

]
Observe that the matrix encodes the information of the Row operations above. To encode
the operations on ri, consider the matrix-vector multiplication:

Qi

[
ri−1
ri

]
=

[
0 1
1 −qi

] [
ri−1
ri

]
=

[
ri

ri−1 − qiri

] [
ri
ri+1

]
To encode the information on si and ti, let Ri = Qi . . . Q1. We claim that:

Ri =

[
si ti
si+1 ti+1

]
Proof. We proceed by induction on i. This holds for R1 = Q1 since s1 = 0, t1 = 1, s2 =
1, t2 = −q1.

Now suppose the statement holds for R1, . . . , Ri−1. Then,

Ri = QiQi−1 . . . Q1

= QiRi−1

=

[
0 1
1 −qi

] [
si−1 ti−1
si ti

]
=

[
si ti

si−1 − qisi ti−1 − qiti

]
=

[
si ti
si+1 ti+1

]

11

Let’s formalize this:

Algorithm 1: Extended Euclidean Algorithm

Our input is: a, b ∈ R, b 6= 0, d(a) ≥ d(b)) and R a Euclidean Domain
1 Initialization:

• Set r0 ← a
• Set r1 ← b

2 for i = 1 . . . do
• Compute qi = b ri

ri−1
c

• Compute ri+1 from Qi

[
ri−1
ri

]
3 Stop loop at i = ` such that r`+1 = 0

Example 3.2

We can compute gcd(91, 63) using the matrix formulation:

Q1 =

[
0 1
1 −1

]
, Q2 =

[
0 1
1 −2

]
, Q3 =

[
0 1
1 −4

]

R3

[
91
63

]
= Q3Q2Q1

[
91
63

]
=

[
−2 3
9 −13

] [
91
63

]
=

[
7
0

]
so (−2)(91) + 3(63) = 7, which matches what we had before

3.3 Correctness

Proposition 3.1

r` = gcd(r0, r1)

Proof. We want to show:

1. r`|r0 and r`|r1
2. If d|r0 and d|r1, then d|r` for all d ∈ R

From the algorithm: Q` . . . Q1

[
r0
r1

]
=

[
r`
0

]
Let Ri = Qi . . . Q1 =

[
si ti
si+1 ti+1

]
Then, r`

[
r0
r1

]
=

[
s` t`
s`+1 t`+1

]
=

[
r`
0

]
12

So s`r0 + t`r1 = r` (i.e. The second statment is true)

For the 1st statement: Each Qi is invertible over R (Check!) So, each Ri is invertible over

R and so in particular

[
r0
r1

]
= R−1`

[
r`
0

]

3.4 Cost Analysis

Consider R = F[x]. Assume deg(r0) ≥ deg(r1).

We want to compute the cost of computing (qi, ri+1)1≤i≤`

How many division steps `?: ` ≤ 1+deg(r1) since −∞ = deg(ri+1) < deg(r`) < . . . < deg(r1)

And dividing ri−1 by ri with remainder costs C(deg(ri + 1)(deg(qi + 1))) operations (C
constant) from F .

Key observation:
∑`

i=1 deg(qi) =
∑`

i=1 (deg(ri−1)− deg(ri)) = deg(r0)

So the total cost is thus:

≤
∑̀
i=1

C(deg(ri + 1))(deg(qi + 1))

≤ C(deg(r1 + 1))
∑̀
i=1

(deg(qi + 1)) (ri decreases by 1 in each iteration in the worst case)

≤ C(deg(r1 + 1))(deg(r0) + `)

∈ O((1 + deg r0)(1 + deg r1))

Extension: what is the cost of computing Q` . . . Q1 (Exercise: Can be done in approximately
the same time)

3.5 Applications of the EEA

Computing over finite field (over a prime), given nonzero a ∈ Zp, use EEA to find s, t ∈ Z
such that sa+ tp = 1, then sa ≡ 1 mod p⇒ s = a−1 ∈ Zp

Rational Number Reconstruction: −4
5
≡ 40 mod 51, call −4

5
the signed fraction, 30 the

modular image and 51 the modulos m.

Input:

• A modulos m ∈ Z>0

• An image u ∈ Z≥0 such that 0 ≤ u < m

• Bounds N,D ∈ Z>0 such that 2ND < m

13

Output: A signed and reduced rational number n/d such that n/d ≡ u mod m, |n| ≤ N ,
d ≤ D

Fact: There is a unique n/d, if it exists, that satisfy the bounds.

Algorithm: Use EEA on m and u

Example 3.3

u = 40,m = 51, N = D = 5 There are 6 Q’s. Look at R3 = Q3Q2Q1

14

Lecture 4: Polynomial Evaluation and Multiplication

4.1 Polynomial Evaluation

Suppose we were given the following polynomial:

f(x) = 5x1000 + 2x999 + . . .+ 3x+ 2 ∈ Z7[x]

and an input α ∈ Z300×300
7 (i.e. 300-by-300 matrix with elements from Z7)

Question: What is the cost of evaluating f(α)?

Observations:

• The expensive operation is matrix multiplication

• It seems like we need at least 1000 multiplications to calculate each of: α2, α3, . . . , α1000

However, by the end of the lecture, we will show a method that needs only 63 multiplications.

4.1.1 Näıve Algorithm

Algorithm 2: Näıve Algorithm

Input: α, a0, a1, . . . an ∈ R (R ring)
Output: f(α) ∈ R, where f(x) = a0 + a1x+ . . .+ anx

n ∈ F[x]

1 Compute α2, α3, . . . , αn (n− 1 multiplications)
2 Compute each aiα

i ∀i (n multiplications)
3 Add (n additions)

This method takes 2n− 1 multiplications and n additions.

4.1.2 Horner’s Scheme

Horner’s Scheme evaluates the polynomial in the following order:

f(α) = (((. . . (anα + an−1)α . . .)α + a2)α + a1)α + a0 (4.1)

Note that each expression enclosed by parentheses cost 1 multiplication and 1 addition.
Hence, overall, we have n multiplications and n additions. (We’ve decreased the number of
multiplications by half!)

In 1954, Ostrowski asked if Horner’s scheme is optimal. This lead to the development of the
non-scalar complexity model.

4.1.3 Non-scalar Complexity Model

Let R = F[x, a0, . . . , an] be the ring of polynomials in indeterminates x, a0, . . . , an. We define
scalar operations to be:

15

• Additions of 2 elements of R

• Multiplications of elements of R by fixed constants from F

And, non-scalar operations to be: the multiplication of 2 inputs or non-scalar quantities.

Roughly speaking, the non-scalar operations will be the costly operations.

With this model in mind, let’s rephrase our question: Is Horner’s Scheme optimal with
respect to non-scalar cost? No! (Victor Pan, 1959)

Let’s calculate the non-scalar cost of Horner’s method. Fix n and recall that evaluation is
performed like so:

f(α) = (((. . . (anα + an−1)α . . .)α + a2)α + a1)α + a0

The innermost sum and multiplication anα + an−1 is free. However, the multiplication
(anα + an−1)α is a multiplication of two non-scalar quantities (the α). So, this counts
towards our non-scalar cost.

Each subsequent multiplication will also be a non-scalar operation. In total, we perform
n − 1 non-scalar operations. However, we’ll use even fewer non-scalar operations with the
next method

4.1.4 Baby-Steps/Giant-Steps Method (By Patterson and Stockmeyer)

Theorem 4.1: (Patterson and Stockmeyer, 1973)

Let f ∈ F[x] of degree n. Then f(α) can be evaluated at any α ∈ F with 2d
√
ne − 1

non-scalar operations.

We’ll prove this by exhibiting the algorithm. The idea is to partition f into k ≈
√
n blocks

of length m ≈
√
n. Then, we evaluate each block before evaluating the sum of the blocks.

Let’s see an example of this:

Example 4.1

Let m = d
√
ne, k = 1 +

⌈
n
m

⌉
, and f(x) = 2x8 +x7 + 5x6 + 2x5 + 8x4 + 2x3 +x2 +x+ 4.

So m = 3 is the length of each block and k = 4 is the upper bound on the number of
blocks we’ll have. Let F0, F1, F2 be our blocks:

f(x) = 2x8 + x7 + 5x6 + 2x5 + 8x4 + 2x3 + x2 + x+ 4

= (2x2 + x+ 5)︸ ︷︷ ︸
F2

x6 + (2x2 + 8x+ 2)︸ ︷︷ ︸
F1

x3 + (x2 + x+ 4)︸ ︷︷ ︸
F0

= F2(x) · (x3)2 + F1(x) · (x3) + F0(x)

16

Observe that this is just a polynomial with indeterminate x3. Suppose we are given
input α and we precompute α2 and α3. (This costs us m − 1 = 3 − 1 = 2 non-scalar
operations)

Then, we can first evaluate each Fi(α). This is free. (No non-scalar operations occur)

What remains is to evaluate our polynomial with input α3, and we can use Horner’s
scheme. (This costs k − 1 non-scalar operations)

Proof. Consider the algorithm:

Algorithm 3: Baby-Steps/Giant-Steps Method

1 Compute α2, α3, . . . , αm (m ≈
√
n non-scalar operations)

2 Compute βi = Fi(α) for 0 ≤ i ≤ k − 1 (0 non-scalar operations since powers of α
precomputed)

3 Compute f(α) = βk−1(α
m)k−1 + βk−2(α

m)k−2 + . . .+ β0
We can use Horner’s Scheme here, which costs k − 1 non-scalar operations.

In total, this requires m− 1 + k − 1 = 2d
√
ne − 1 non-scalar operations

4.2 Polynomial Multiplication

Input: f, g ∈ R[x] of degree n > 0

Output: f × g

The standard algorithm for this costs O(n2) operations from R: (n+ 1)2 ×′ s and n2 +′ s

4.2.1 Divide-and-Conquer Approach

Let us attempt to solve this using divide-and-conquer.

Let n = 2k, k ∈ N, a, b ∈ R[x] with deg a, deg b < n and m = n
2
.

We will write a = (A1x
m+A0), b = (B1x

m+B0), then a×b = A1B1x
n+(A0B1−A1B0)x

m+
A0B0.

Example 4.2

For the following function a:

a = x5 + 3x4 + 2x3 + x2 + 3x+ 5

= (x+ 3)︸ ︷︷ ︸
A1

x4 + (2x3 + x2 + 3x+ 5)︸ ︷︷ ︸
A0

17

The cost of multiplying the two polynomials using this method is:

T (n) ≤

{
4T
(
n
2

)
+ 4n n > 1

1 n = 1
= n(5n− 4) ∈ Θ(n2) (4.2)

But ... that’s not any better than what we had before ...

4.2.2 Karatsuba’s Algorithm

It turns out we can reduce the number of multiplications earlier by 1. Consider writing a× b
like so:

a× b = A1B1(x
n − xm) + (A1 + A0)(B1 +B0)x

m + A0B0(1− xm) (4.3)

This only requires 3 multiplications:

T (n) ≤

{
3T
(
n
2

)
+ cn n > 1

1 n = 1
∈ Θ(nlog2 3) (log2 3 ≈ 1.59) (4.4)

The calculation for T (n) can be done using the Master theorem, or the following theorem:

Theorem 4.2

For k ≥ 1:
T (2k) ≤ 3T (2k−1) + c2k ⇒ T (2k) ≤ 3k − 2c2k

Proof. We proceed by induction on k. The base case is easily verified. Assume the statement
holds for some k − 1 ≥ 1, then:

T (2k) ≤ 3T (2k−1) + c2k

≤ 3(3k−1 − 2c2k−1) + c2k

= 3k − 2c2k

and 3k = 3log2 n = (2log2 3)log2 n = nlog2 3

4.3 Aside: Circuit Representations

We can use circuit drawings to model computations.

For example, in Figure 1, we can see that we perform no non-scalar operations.

But, in Figure 2, the multiplication at the 3rd level is a non-scalar operation.

Remark 4.1. The depth of a circuit is the parallel complexity

18

Figure 1: A circuit representation of
a1α + a0

Figure 2: A circuit representation of

a2α
2 + a1α+ a0

19

Lecture 5: Polynomial Multiplication using Lagrange In-

terpolation, Vandermonde Matrix

5.1 Polynomial Multiplication using Lagrange Interpolation

We continue our discussion on polynomial multiplication. Again, the motivation for the
following algorithm is to reduce the non-scalar cost.

Theorem 5.1

Given a, b ∈ F[x], deg a, deg b < n, multiplying a × b has cost 2n − 1 non-scalar
multiplications if #F ≥ 2n− 1

Note. The non-scalar multiplications refer to the coefficients of the polynomials we want to
multiply

Idea. Use Polynomial Evaluation and Interpolation.

Let’s see an example of this:

Example 5.1

We want to multiply the following polynomials a(x) = 2 + 3x, b(x) = 1 + 2x using
Lagrange Interpolation.

Let c(x) = a(x)× b(x) be the resulting polynomial. Note that deg c = 2 so we’ll need
3 evaluation points. Let u0 = 0, u1 = 1, u2 = 2 be the 3 such points.

Evaluating our polynomials a and b at these 3 points give:

a(u0) = 2, b(u0) = 1

a(u1) = 5, b(u1) = 3

a(u2) = 8, b(u2) = 5

which gives us the value of c at the 3 points:

c(u0) = a(u0)× b(u0) = 2

c(u1) = a(u1)× b(u1) = 15

c(u2) = a(u2)× b(u2) = 40

We’re nearly there! Now we have 3 data points:(0, 2), (1, 15), (2, 40). Define the fol-
lowing Lagrange basis polynomials:

L0 =
(x− 1)(x− 2)

(0− 1)(0− 2)
, L1 =

(x− 0)(x− 2)

(1− 0)(1− 2)
, L2 =

(x− 0)(x− 1)

(2− 0)(2− 1)

20

Then,
c(x) = 2× L0 + 15× L1 + 40× L2 = 2 + 7x+ 6x2

Proof. Consider the following algorithm:

Algorithm 4: Polynomial Multiplication using Lagrange Interpolation

(Our input is: a, b ∈ F[x] with deg a, deg b < n)

1 Choose 2n− 1 evaluation points: u1, . . . u2n−1 ∈ F
2 Compute αi = a(ui) and βi = b(ui) for i = 1, . . . , 2n− 1
3 Compute γi = αiβi for i = 1, . . . , 2n− 1
4 Interpolate to get c = a× b using Lagrange’s formula:

c =
∑

1≤i≤2n−1

γiLi (5.1)

where Li is defined as:

Li =
∏
j 6=i

x− uj
ui − uj

∈ F[x] (5.2)

Only Line 3 contributes to the non-scalar cost, and only 2n−1 multiplications are made.

5.2 A Slight Detour: The Vandermonde Matrix

Definition 5.1: (Vandermonde Matrix)

We define the Vandermonde Matrix to be the following n× n matrix:

V DM(u1, u2, . . . , un) =


1 u11 . . . un−11

1 u12 . . . un−12
...

...
. . .

...
1 u1n . . . un−1n

 (5.3)

Now, given a(x) = a0 + a1x + . . . an−1x
n−1, observe that we can express both polynomial

evaluation and interpolation using the Vandermonde matrix.

21

5.2.1 Polynomial Evaluation

Given a as above and n evaluation points: u0, . . . un−1, the evaluation of a at these n points
is:

V DM(u0, . . . , un−1)

 a0
...

an−1

 =

 a(u0)
...

a(un−1)

 (5.4)

5.2.2 Polynomial Interpolation

Proposition 5.1: (Determinant of a Vandermonde Matrix)

Let V = V DM(u1, . . . , un). The determinant det(V) is:

det(V) =
∏

1≤i<j≤n

(uj − ui) (5.5)

Remark 5.1. Observe that when u1, . . . , un are all distinct, then det(V) is non-zero and
the matrix is invertible.

Given (u0, α0), (u1, α1), . . . , (un−1, αn−1), where u0, . . . un−1 are all distinct, the interpolation
of a at these n points is:  a0

...
an−1

 = V DM(u0, . . . , un−1)
−1

 α0
...

αn−1

 (5.6)

(The inverse exists by Proposition 5.1)

5.3 Another View on Polynomial Multiplication

We can rewrite the steps Algorithm 4 as expressions involving the Vandermonde matrix.
Here, we’ll just look at an example, and leave writing the algorithm out formally as an
exercise to the reader.

Example 5.2

We will work over the field Z7. Consider the following polynomials:

f(x) = 2x2 + 3x+ 1

g(x) = x2 + 5x+ 2

Let h(x) = f(x)× g(x) = h0 + h1x+ . . .+ h4x
4 and let’s choose the evaluation points:

0, 1, 2, 3, 4 (We’ll see very soon that we can choose better points)

22

1. Evaluation:

To evaluate f, g at the 4 evaluation points, we’ll use Equation (5.4):

V DM(0, 1, 2, 3, 4)

f g


1 2
3 5
2 1
0 0
0 0

=

f g


1 2
6 1
1 2
4 2
4 4

(Note that the 0’s are used for padding since we want to evaluate 5 points but
our polynomials are only of length 3)

2. Pointwise Multiplication:

Now we take the resulting evaluated points and perform pointwise multiplication
to obtain h(x). That is:

h(0) = f(0)× g(0) = 1× 2 = 2

h(1) = f(1)× g(1) = 6× 1 = 6

h(2) = f(2)× g(2) = 1× 2 = 2

h(3) = f(3)× g(3) = 4× 2 = 1

h(4) = f(4)× g(4) = 4× 4 = 2

3. Interpolation:

Finally, use Equation (5.6) to find h0, . . . , h4:

V DM(0, 1, 2, 3, 4)−1


2
6
2
1
2

 =


2
4
6
6
2

 =


h0
h1
h2
h3
h4


So, h(x) = 2x4 + 6x3 + 6x2 + 4x+ 2

5.4 Choosing “Good” Evaluation Points

We’ll see how we can choose better evaluation points to achieve polynomial multiplication
in time O(n log n) next lecture. For now, let’s just make the following definition.

23

Definition 5.2: (Primitive n-th root of unity)

Let n ∈ N and w ∈ F. w is a primitive n-th root of unity (n-PRU) if:

1. wn = 1

2. n is a unit in F

3. wk 6= 1 for 1 ≤ k < n

Remark 5.2. For the 2nd property, we mean the n-fold sum of the additive identity 1F in
F. Further, we can define primitive n-th roots of unity arbitrary rings as well. In this case,
the requirement that n is a unit is more significant. We will see later that the inverse of such
n must exist for our particular usage of these elements.

Example 5.3: (PRUs)

1. Let F = C:

• w = e
2πi
8 is an 8-PRU.

• w = i is an 4-PRU

• w = −1 is an 2-PRU

2. Let F = Z17:

• w = 3 is an 16-PRU

• w = 7 is an 4-PRU

Proposition 5.2

1. If w is an n-PRU, then w−1 is also an n-PRU

2. If w is an n-PRU and n is even, then w2 is an n
2
-PRU

24

Lecture 6: Discrete Fourier Transform and Fast Fourier

Transform

6.1 Discrete Fourier Transform

Definition 6.1

Let w be an n-PRU in F. Define V (w) to be the following n-by-n matrix:

V (w) =


1 1 . . . 1
1 w1 . . . wn−1

1 w2 . . . w2(n−1)

...
...

. . .
...

1 w(n−1) . . . w(n−1)2

 = V DM(w0, w1, . . . , wn−1) (6.1)

and likewise for V (w−1).

Theorem 6.1

Let w be an n-PRU, then V (w) · V (w−1) = nI

Proof. (
V (w)V (w−1)

)
= i-th row of V (w)× j-th col of V (w−1)

=
∑

0≤k<n

wikw−jk

=
∑

0≤k<n

w(i−j)k

If i = j, then the sum is
∑

k 1 = n

If i 6= j, then this is a geometric series:

∑
0≤k<n

w(i−j)k =
w(i−j)n − 1

w(i−j) − 1
= 0

since w(i−j)n = 1 as w is an n-PRU

25

Definition 6.2: (Discrete Fourier Transform)

Let w ∈ F be an n-PRU. DFT(w) is the linear map F n → F n defined by:
a0
a1
...

an−1

 7−→

b0
b1
...

bn−1

 = V (w)


a0
a1
...

an−1

 (6.2)

i.e. bj =
∑

0≤k<n akw
jk

Note. We may write DFT(w)(f), where f is a function with deg f = n − 1, to denote
performing the DFT on the coefficients of f

6.2 Fast Fourier Transform

Our goal is to develop a fast algorithm to evaluate DFT(w)(f). The main idea is to divide-
and-conquer. Let’s look at a motivating example:

Let f = a0 + a1x+ . . .+ akx
k (with k even). Consider the decomposition of f like so:

f(x) = (a0 + a2x
2 + a4x

4 + . . .) + (a1x+ a3x
3 + a5x

5 + . . .)

= (a0 + a2x
2 + a4x

4 + . . .) + x(a1 + a3x
2 + a5x

4 + . . .)

=
∑

0≤i≤k/2

a2ix
2i + x

∑
0≤j≤k/2

a2j+1x
2j

That is, we divide the function into parts containing only even or only odd exponents. Then,
we factor an x out of the odd exponents so that we only have even exponents in the sums.
Define the following two functions:

feven(x) =
∑

0≤i≤k/2

a2ix
i (6.3)

fodd(x) =
∑

0≤j≤k/2

a2j+1x
j (6.4)

Then, f can be rewritten using these two functions like so:

f(x) = feven(x2) + xfodd(x
2) (6.5)

Now consider evaluating f at the 4 points: 1, i,−1,−i. Plugging these 4 values into equation

26

Equation (6.5), we get the following expressions:

f(1) = feven(1) + (1)fodd(1)

f(i) = feven(i2) + (i)fodd(i
2)

f(1) = feven(1) + (−1)fodd(1)

f(1) = feven(i2) + (−i)fodd(i2)

Evaluating 1 and −1 amounts to computing feven(1) and fodd(1) and the combining the
results appropriately. Likewise, we can do the same with i and −i

This suggests that we can reuse the computations of feven and fodd, which are polynomials
of half the degree of f .

In general, if we can “pair up” our n points in the form:

(u1,−u1), (u2,−u2), . . . , (un
2
,−un

2
)

we can use Equation (6.5) to save evaluations

Lemma 6.1

Let w be an n-PRU. Then, there is always a pairing of points of the above form. More
precisely:

w
n
2
+i = −wi

for i = 1, . . . , n
2

Proof. wn = 1⇒ wn − 1 = 0⇒
(
w

n
2 − 1

) (
w

n
2 + 1

)
= 0. So, w

n
2 = ±1, but w

n
2 6= 1 since w

is an n-PRU, so w
n
2 = −1. Then, w

n
2
+i = w

n
2wi = −wi

Theorem 6.2

Let n be a power of 2. Let w ∈ F be an n-PRU. Then, DFT(w) can be computed in
O(n log n) field operations.

Proof. Let f = a0 +a1x+ . . .+an−1x
n−1. We’ll exhibit an algorithm to compute DFT(w)(f)

27

in O(n log n) time:

Algorithm 5: Fast Fourier Transform (FFT)

Input: f = a0 + a1x+ . . .+ an−1x
n−1, w ∈ F an n-PRU.

Output: DFT(w)(f)

1 Compute w2, w3, . . . , wn−1

2 Recursively compute DFT(w)(feven) and DFT(w)(fodd):

DFT(w)(feven) =


feven(w2)
feven(w4)

...
feven(wn)

 and DFT(w)(fodd) =


fodd(w

2)
fodd(w

4)
...

fodd(w
n)


3 Compute f(wk) = feven(w2k) + wkfodd(w

2k) for k = 0, 1, . . . , n− 1

Let T (n) be the cost for deg f = n. Line 1 costs less than n multiplications. Line 3 costs n
multiplications and n additions. In total,the cost of Algorithm 5 is

T (n) = 2T
(n

2

)
+ 3n ∈ O(n log n)

6.3 Polynomial Multiplication using the FFT

We want to relate this method back to polynomial multiplication.

Theorem 6.3

Let F be a field, n = 2k, w ∈ F an n-PRU. Then, polynomials in F[x] of degree < n
2

can be multiplied using O(n log n) field ops.

Proof. Recall that polynomial multiplication can be performed by:

1. Evaluating the two functions at n points

2. Multiplying the images pointwise

3. Interpolating to obtain the multiplied function

Further, we can express evaluation and interpolation as matrix operations using the Vander-
monde matrix (Example 5.2). Now, we’ll use the DFT and Fast Fourier Transform algorithm
to speed both operations up.

28

Let a = a0 + a1x+ . . .+ an
2
−1x

n
2
−1, b = b0 + b1x+ . . .+ bn

2
−1x

n
2
−1 and

a =



a0
a1
...

an
2
−1

0
...
0


b =



b0
b1
...

bn
2
−1

0
...
0


where the 0’s are padding elements so that the vectors are of length n.

Let c = c0 + c1 + . . . + cnx
n = a × b and c be the vector of its coefficients as with a and b.

Then,

c = (DFT(w))−1 (DFT(w)(a) ·DFT(w)(b))

=
1

n

(
DFT(w−1)

)
(DFT(w)(a) ·DFT(w)(b))

(where · is pointwise multiplication)

And this uses O(n log n) field operations

Definition 6.3

We say F supports the FFT (Algorithm 5), if F has a 2`-PRU for any ` ∈ N

More generally, we’ll use Definition 6.3 to extend Theorem 6.2.

Theorem 6.4

If F supports the FFT, the polynomials of degree at most n can be multiplied in
O(n log n) field ops.

Theorem 6.5: (Schönhage & Strassen, 1971)

Integer Multiplication can be done in time O(n log n log log n)

Theorem 6.6: (Cantor & Kaltofen, 1991)

Over any ring, polynomials of degree n can be multiplied in O(n log n log log n)

29

Lecture 7: Fast Division with Remainder and Newton

Iteration

(See Appendix A for notes on Multiplication time)

7.1 Fast Division with Remainder

Goal: Given two polynomials:

a(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 ∈ F[x]

b(x) = bmx
m + bm−1x

m−1 + . . .+ b1x+ b0 ∈ F[x].

with an, bm 6= 0, b monic, and m ≤ n, find q(x) and r(x) such that a(x) = q(x)b(x) + r(x),
deg r < deg b.

7.1.1 Reversions

To solve the above problem, we’ll need a new operation called reversion.

Given a(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 ∈ F[x], we define the reversion of a, denoted
rev(a) or revn(a) to be the following procedure:

1. Substitute x with 1
y
, then

2. Multiply by yn.

This gives:

rev(a) = revn(a) := yna

(
1

y

)
= yn

(
a0 + a1

(
1

y

)
+ . . .+ an

(
1

yn

))
= yna0 + yn−1a1 + . . .+ an

(7.1)

So, we have reversed the ordering of the coefficients.

Remark 7.1. rev (rev (a)) = a

Note. Reversions don’t cost any ring operations. For example, if the coefficients were stored
as an array, then a reversion is just a reversal of the array.

30

7.1.2 Back to Fast Division

Using the idea of reversions, let’s rewrite our goal. The reversion of a(x) = q(x)b(x) + r(x)
is:

revn(a) = yna

(
1

y

)
= yn

(
q

(
1

y

)
b

(
1

y

)
+ r

(
1

y

))
= yn

(
q

(
1

y

))
yn
(
b

(
1

y

))
+ yn

(
r

(
1

y

))
= revn−m(q) revm(b) + yn−m+1 revm−1(r)

For the last step: deg b = m, so deg q = n−m. Further, since deg r < deg b, deg r is at most
m− 1.

And, if we take the equation modulo yn−m+1, this gives:

revn(a) = revn−m(q) revm(b) (mod yn−m+1) (7.2)

We revise our goal: Solve Equation (7.2) for the unknown revn−m(q)

7.2 Newton Iteration

To solve Equation (7.2), we want to take the inverse of revm(b):

revn−m(q) = revn(a) revm(b)−1 (mod yn−m+1) (7.3)

Generalizing this problem a bit: Given a function g and k ∈ N, we want to find a function

h so that gh ≡ 1 mod xk.

The main idea is to do this iteratively using Newton’s method. Recall that Newton’s method
calculates a sequence h0, h1, h2, . . . by using the formula:

hi+1 = hi −
φ(hi)

φ′(hi)
(7.4)

Toying around with the function for φ, we find that φ(h) = 1
h
− g will work for us since 1/g

is a root of φ. Indeed, φ(1/g) = 1
1/g
− g = g − g = 0.

Suppose we already have hi, let’s perform one iteration of newton’s method with the above
φ:

hi+1 = hi −
φ(hi)

φ′(hi)

= hi −
1
hi
− g
− 1

h2
i

= hi + hi − gh2i
= 2hi − gh2i

31

How fast does this converge to our desired modulus xk? Observe that hi is squared in each
iteration, so our precision is doubled in each step.

We summarize this in the following theorem:

Theorem 7.1

Let h0, h1, h2, . . . ∈ F[x] be such that deg hi < 2i and ghi ≡ 1 (mod x2
i
). Then, h0 = 1

and hi+1 ≡ 2hi − gh2i (mod x2
i+1

) for i > 0

And, this yields the following algorithm:

Algorithm 6: Quadratic Newton Iteration

Input: g ∈ F[x] monic and n = 2r

Output: h ∈ F[x] such that gh ≡ 1 (mod xn)

1 h0 := 1
2 for i = 0, 1, . . . , r do

hi+1 = 2hi − gh2i (mod x2
i+1

)

Theorem 7.2: (Time Complexity of Algorithm 6)

If n = 2r, then hr ≡ g−1 (mod xn) can be computed in O(M(n)) field operations

Proof. Computing hi+1 requires at most 2M(2i+1) + 2 · 2i+1 field operations. (Polynomial
multiplication, scalar multiplication and subtraction). Then, the total cost is:

2
r−1∑
i=0

(
M
(
2i+1

)
+ 2i+1

)
=

(
2

r−1∑
i=0

M
(
2i+1

))
+

(
4

r−1∑
i=0

2i

)

≤

(
2

r−1∑
i=0

M
(
2i+1

))
+ 4n

≤ 2M (2r)
r−1∑
i=0

1

2r−i + 4n

(
since M(2i) ≤ M(2r)

2r−i by superlinearity

)
≤ 2M (2r)

∑
i≥0

1

2i
+ 4n

∈ O (M (2r)) +O(n)

∈ O (M(n))

32

7.3 Completing Fast Division with Remainder

We now have the necessary components to complete the algorithm for Fast Division with
Remainder:

Algorithm 7: Fast Division with Remainder

Input: Two polynomials:
• a(x) = anx

n + an−1x
n−1 + . . .+ a1x+ a0 ∈ F[x]

• b(x) = bmx
m + bm−1x

m−1 + . . .+ b1x+ b0 ∈ F[x]
with an, bm 6= 0, b monic, and m ≤ n
Output: q(x) and r(x) such that a(x) = q(x)b(x) + r(x), deg r < deg b.

1 Compute rev(a)
2 Compute rev(b)−1 to precision xn−m+1 using Algorithm 6
3 Compute rev(q) = rev(a) · rev(b)−1 (mod xn−m+1)
4 q ← rev (rev(q))
5 r ← a− q · b

Corollary 7.1

Let a, b ∈ F[x] with deg a = n, deg b = m,n ≥ m. Then, q = a quo b can be computed
in M(n−m) field ops

Proof. By Theorem 7.2

Corollary 7.2

For polynomials of degree at most n in F, division with remainder requires at most
O(M(n)) operations.

Proof. Computing q uses at most M(n−m) field ops and computing r uses at most O(M(n))
field ops

7.4 Concluding Remarks

Theorem 7.3: (Existence and Uniqueness of Inverse)

Let g = g0+g1x+g2x
2+ . . . ∈ F [[x]] have constant coefficient g0 = 1. For any k ∈ Z>0,

there exists a unique b ∈ F [x] with deg b < k such that bg ≡ 1 (mod xk)

Proof. We work in mod xk. Write g = 1 + g1x + . . . + gk−1x
k−1 (mod xk−1) and let b =

33

b0 + b1x+ . . .+ bk−1x
k−1. Then,

bg = (b0 + b1x+ . . .+ bk−1x
k−1)(1 + g1x+ . . .+ gk−1x

k−1) ≡ 1

if and only if

B


1

b1
. . .

...
.

bk−1 . . . b1 1

G


1

g1
. . .

...
.

gk−1 . . . g1 1

=

Ik


1
. . .

. . .

1

(Note: BG = Ik and GB = Ik. This is easy to see since the multiplication of the polynomials
is commutative)

if and only if

G


1
b1
...

bk−1

 =


1
0
...
0


And this system has a unique solution for b.

Note. B and G are known as Toeplitz matrices.

34

Lecture 8: Newton Iteration for Integers and padic In-

version

I’ll get back to this one ... this topic is less important

35

Lecture 9: Chinese Remainder Algorithm

Theorem 9.1: (Chinese Remainder Theorem)

Let R be an Euclidean Domain and M = m0m1 . . .mr−1, where gcd(mi,mj) = 1 for
i 6= j. (Note that this condition implies that M = lcm(m0, . . . ,m1)) Then,

R�(M)
∼= R�(m0)

× . . .×R�(mr−1)
(9.1)

Recall that in Section 2.2, that showed one direction of the bijection, i.e. the map taking
rem(a,M) 7→ (rem(a,m0), rem(a,m1), . . . , rem(a,mr−1)). This takes O(log2M) word ops.

In this lecture, we want to develop the reverse map using a similar amount of word ops.
The idea of using small moduli and this Chinese Remainder algorithm (which we may refer
to as “Chinese Remaindering”) to obtain a pre-image will be a central idea in many of the
remaining algorithms we will learn.

Example 9.1

Operations on modular residues are reflected when we perform Chinese Remainder to
retrieve the preimage.

Let m = 1001 = 7 × 11 × 13, so in this example we’ll consider R = Z1001
∼=

Z7×Z11×Z13

Let a ≡ 233 (mod m), b ≡ 365 (mod m). By Theorem 9.1, a 7→ (2, 2, 12) and
b 7→ (1, 2, 1)

Consider the following operations:

1. rem(a + b,m) = (2, 2, 12) + (1, 2, 1) = (3, 4, 0) 7→ 598 (mod m). Indeed: 233 +
365 ≡ 598 (mod m)!

2. rem(a · b,m) = (2, 2, 12) · (1, 2, 1) = (2, 4, 12) 7→ 961 (mod m). Indeed, we can
check: 233 · 365 = 85045 ≡ 961 (mod m)

The main takeaway: The Chinese Remainder Theorem guarantees a unique preim-
age, so we can always work with small moduli and then work backwards. (Many times,
it’ll be much more computationally efficient to do so!)

Let’s start developing the algorithm:

Goal: Given modulim0,m1, . . .mr−1 and images v0, v1, . . . , vr−1. Find an f ∈ R (R Euclidean
Domain) such that f ≡ vi (mod mi) for 0 ≤ i ≤ r − 1

36

Let M = m0m1 . . .mr−1 and consider the following construction for f :

f = v0s0
M

m0

+ v1s1
M

m1

+ . . .+ vr−1sr−1
M

mr−1
(9.2)

Consider f mod m0, then each of M
m1
, . . . , M

mr−1
will vanish and we are left with:

f = v0s0
M

m0

≡ v0 (mod m0)

⇒ s0
M

m0

≡ 1 (mod m0)

To determine s0 recall that we can apply EEA to get:

s0
M

m0

+ t0m0 = 1

Since the choice of s0 was arbitrary, this works for any si for 0 ≤ i ≤ r−1. So our algorithm
is:

Algorithm 8: Chinese Remainder Algorithm

1 Compute M = m0m1 . . .mr−1

2 Compute M
mi

for 0 ≤ i ≤ r − 1

3 Compute si such that si
M
mi

+ timi = 1 using EEA

4 Compute f = v0s0
M
m0

+ v1s1
M
m1

+ . . .+ vr−1sr−1
M

mr−1

Theorem 9.2

If each vi is in the range [0,mi− 1], then the cost of the Chinese Remainder algorithm
is O(log2M) word operations

Proof. Each step is bounded by O(log2M) word operations

Example 9.2

Let m0,m1,m2 = 7, 11, 13 and v0, v1, v2 = 2, 2, 12, so M = 1001

We want to find s0, s1, s2 so that f ≡ vi (mod mi) for each i, where:

f = 2× 7× 11× 13

7
× s0 + 2× 7× 11× 13

11
× s1 + 12× 7× 11× 13

13
× s2

= 2× (11× 13)× s0 + 2× (7× 13)× s1 + 12× (7× 11)× s2

37

We use EEA to compute each si:

gcd(11× 13, 7) = 1⇒ (−2)(11× 13) + (41)(7) = 1⇒ s0 = −2

gcd(7× 13, 11) = 1⇒ (4)(7× 13) + (−33)(11) = 1⇒ s1 = 4

gcd(7× 11, 13) = 1⇒ (−1)(7× 11) + (6)(13) = 1⇒ s2 = −1

Note. Here, we perform the algorithm over the positive range, i.e. All our numbers are in
the range [0,m− 1]. We can perform the Chinese Remainder algorithm over the symmetric
range as well. Then, our numbers must be in the range:

[
−
⌊
m−1
2

⌋
,
⌊
m
2

⌋]
9.1 Variations to Chinese Remaindering

9.1.1 Incremental Chinese Remaindering

Suppose we are given some a ∈ Z and we start choosing small primes m0,m1,m2, . . . to
compute the sequence:

rem(a,m0), rem(a,m0m1), rem(a,m0m1m2), . . .

Eventually, M = m0m1m2 . . . will become large enough such that rem(a,M) will be the
actual result. This occurs when the sequence fixed (There may be a chance that the se-
quence appears fixed but M isn’t large enough yet, however, we can perform the analysis to
determine that with low probability, we will get false positives).

9.1.2 Mixed Radix Representation

Let 0 ≤ a < m0m1 . . .mr−1, each mi ∈ N≥2 (not necessarily relatively prime)

Claim: We can write a uniquely as:

a = a0 + a1m0 + a2m0m1 + . . .+ arm0m1 . . .mr−1

with 0 ≤ ai < mi for all i.

In fact, we can use this to help us compute the incremental chinese remaindering by letting
m0m1 . . .mr−2 be one radix and mr be the second radix.

38

Appendix A: Multiplication Time

Definition A.1

A function M : N>0 → R>0 is a multiplication time for R[x] (R ring) if polynomials
in R[x] of degree < n can be multiplied using at most M(n) ring operations in R.

We’ll use M to add information to our cost estimates and improve our cost analysis for
algorithms

Example A.1

We’ve seen a couple examples of multiplication time already:

• For Näıve Multiplication of polynomials, we know that M(n) ∈ O(n2)

• Using Karatsuba’s algorithm, we can reduce that cost to M(n) ∈ O(n1.59)

• Cantor & Kaltofen (Theorem 6.6) showed: M(n) ∈ O(n2)

And a couple interesting results for integers:

• Schöhage & Strassen (Theorem 6.5) showed that: M(n) ∈ O(n log n log log n)

• Fürer showed in 2007: M(n) ∈ O(n log nK log∗ n), where K is some constant > 1
and log∗ is the iterated logarithm. (Harvey and Van Der Hoeven showed that
K = 4 in 2018)

• In March 2019, Harvey and Van Der Hoeven [1] showed that M(n) ∈ O(n log n)
(Note that the result has yet to be officially peer-reviewed as of the time these
notes were taken)

Useful Assumptions about M :

1. Superlinearity:

If n ≥ m
M(n)

n
≥ M(m)

m
(A.1)

2. At most quadratic:
M(mn) ≤ m2M(n) (A.2)

Proposition A.1

Equation (A.1) implies the following:

• M(mn) ≥ mM(n)

39

• M(n+m) ≥M(n) +M(m)

• M(n) ≥ n

Example A.2

Using the assumptions and Proposition A.1, we can say the following:

• nM(n) +M(n2) ≤ 2M(n2) ∈ O(M(n2))

• M(cn) ≤ c2M(n) ∈ O(M(n)) for constant c

• n3 + nM(n) ≥M(n3) +M(n
3
2) ∈ Ω(M(n3))

40

References

[1] David Harvey and Joris Van Der Hoeven. Integer multiplication in time O(n log n). 2019.
hal-02070778.

[2] Joachim von zur Gathen and Gerhard Jürgen. Modern Computer Algebra. Cambridge
University Press, 3 edition, 2013.

41

	Introduction
	Course Preview
	Representation of Integers
	Addition of Integers

	Complexity of Arithmetic Operations
	Naïve upper bounds on costs
	Addition
	Multiplication
	Division with Remainder

	Multimodular Reduction

	Extended Euclidean Algorithm
	Definitions
	Extended Euclidean Algorithm
	Correctness
	Cost Analysis
	Applications of the EEA

	Polynomial Evaluation and Multiplication
	Polynomial Evaluation
	Naïve Algorithm
	Horner's Scheme
	Non-scalar Complexity Model
	Baby-Steps/Giant-Steps Method (By Patterson and Stockmeyer)

	Polynomial Multiplication
	Divide-and-Conquer Approach
	Karatsuba's Algorithm

	Aside: Circuit Representations

	Polynomial Multiplication using Lagrange Interpolation, Vandermonde Matrix
	Polynomial Multiplication using Lagrange Interpolation
	A Slight Detour: The Vandermonde Matrix
	Polynomial Evaluation
	Polynomial Interpolation

	Another View on Polynomial Multiplication
	Choosing ``Good'' Evaluation Points

	Discrete Fourier Transform and Fast Fourier Transform
	Discrete Fourier Transform
	Fast Fourier Transform
	Polynomial Multiplication using the FFT

	Fast Division with Remainder and Newton Iteration
	Fast Division with Remainder
	Reversions
	Back to Fast Division

	Newton Iteration
	Completing Fast Division with Remainder
	Concluding Remarks

	Newton Iteration for Integers and -adic Inversion
	Chinese Remainder Algorithm
	Variations to Chinese Remaindering
	Incremental Chinese Remaindering
	Mixed Radix Representation

	Appendices
	Multiplication Time
	References

