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1 Introduction
In this expository project, we describe several primality testing algorithms and delve a bit into
the major theorems that motivated their creation. The majority of the focus will be on probable
prime tests. These tests will be very efficient, but are only capable of confirming composite-ness or
telling us that a number is “probably a prime”. This will be Section 2. In Section 3, we will spend
some time describing the AKS primality test. This algorithm is deterministic, polynomial in time
and only returns correct answers. Finally, in Section 4, we’ll end with Maple implementations of
two of the probable prime tests to exhibit their shortcomings, but also how we can combat their
limitations.

2 Probable Prime Testing
The main idea behind probable prime tests is to take a theorem that holds true for all primes:

If p prime, then S is true

and verify S for our given input n. If S is false, we can safely conclude that our given number
is composite. On the other hand, if S is true, then n is probably a prime, but could also be a
composite number that happens to satisfy S. For example, consider the statement:

If p prime (and p is not 2), then p odd

Even numbers (except 2) all clearly do not satisfy the conclusion, so we know they are composite.
However, 15 is odd an number, but clearly not prime!

In this section, we will highlight more versatile conditions that lead to relatively fewer false positives
and the efficient primality tests we can build from them.
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2.1 Fermat Test

From here on out, we assume that any input we are given will be an odd number, since testing for
even-ness is easy.

Our first test is based on Fermat’s little theorem:

Theorem 1 (Fermat’s Little Theorem [1]). If p is a prime number and a is any number not divisible
by p, then

ap−1 ≡ 1 (mod p) (1)

Now, suppose we are given some number n. Attempting to check that an−1 ≡ 1 (mod n) for all
a ∈ Zn is no better than performing trial division against the integers from 2 to

√
n. As such, our

strategy here will be to choose a uniformly random integer a ∈ [2, n − 2] and compute b := an−1

(mod n). If b 6= 1, then we safely conclude that n is composite, and otherwise, we conclude that n
is “probably prime”. This gives us the Fermat test:

Algorithm 1: Fermat Test
Input: Odd number n ∈ N≥5
Output: Whether n is “Composite” or “Probably Prime”

1 Select a ∈ [2, n− 2] uniformly at random
2 b← an−1 (mod n)
3 if b 6= 1 then return “Composite”

else return “Probably Prime”

Remark. We choose a ∈ [2, n− 2] since a = 1 and a = n− 1 satisfy Equation (1) for any odd n

The algorithm correctly returns “probably prime” whenever n is prime (By Theorem 1). When
n is composite and we happen to choose a with gcd(a, n) 6= 1, then gcd(b, n) 6= 1 as well, so the
algorithm also correctly returns “composite”.

So, we’ll proceed with the assumptions that gcd(a, n) = 1 and n composite. Define Z×
n = {a

mod n | gcd(a, n) = 1} (the multiplicative group of units of Zn) and Ln = {u ∈ Z×
n | un−1 ≡ 1

(mod n)}.

Suppose there exists a ∈ Z×
n \Ln. So, gcd(a, n) = 1 but an−1 6≡ 1 (mod n), then our algorithm

correctly returns “composite”. We call such a a Fermat witness. On the other hand, if a ∈ Ln,
then gcd(a, n) = 1 and an−1 ≡ 1 (mod n). So, this a has tricked our algorithm into returning
“probably prime” and we call it a Fermat liar

Example 1. Suppose n = 15. If a is randomly chosen to be 4, then 414 ≡ 1 (mod 15). So, 4 is a
Fermat Liar. On the other hand, if a is randomly chosen to be 7, then 714 ≡ 4 (mod 15), so 7 is a
Fermat witness

Lemma 1. When they exist, there are as many Fermat witnesses as there are Fermat liars

Since, when there exists a Fermat witness then, Ln ≤ Z×
n (as groups), so |Ln| ≤ 1

2 |Z
×
n |, by

Lagrange’s theorem.

When Ln = Z×
n , i.e. there are no Fermat witnesses, we call n a Carmichael number [2]. These

numbers will always trick our algorithm unless we happen to pick a factor of n. In Section 2.2, we
will discover a method to return accurate results despite their existence.
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Excluding Carmichael numbers for now, by Lemma 1, our algorithm will correctly return “com-
posite” with probability at least 1

2 . In general, if we run the algorithm k times and it returns
“composite” in any of the k iterations, we can conclude that n is indeed composite. Then, we also
achieve a success probability of at least 1−

(
1
2

)k
.

Theorem 2 ([3, p. 520]). If n is prime, then Fermat’s test returns “possibly prime” with probability
1. If n is composite and not a Carmichael number, then Fermat’s test returns “composite” with
probability at least 1−

(
1
2

)k
, where k is the number of repeated iterations of the algorithm

Finally, we’ll analyze the time complexity of Fermat’s test. We’ll assume that the random decision
in Line 1 takes some negligible polynomial time. The modular exponentiation in Line 2 can be
computed using repeated squaring [3, p. 75-76] in time at most O(logn ·M(logn)), where M is the
multiplication time for integers. (see [3, Defn. 8.26]).

Theorem 3 ([3, p. 520]). The algorithm has time complexity O(k · logn ·M(logn)) (where k is as
above)

2.2 Miller-Rabin Test

We saw that Fermat’s test does not perform well on inputs that are Carmichael numbers. Although
the Carmichael numbers may seem like an edge case, there are (unfortunately) infinitely many
Carmichael numbers. Further, they might not be as rare as we think.

Theorem 4 ([4]). There are infinitely many Carmichael numbers. Further, for all sufficiently large
x, there are more than x2/7 Carmichael numbers up to x.

Despite this, the next theorem will help us improve the accuracy of Fermat’s test by imposing a
stronger test condition.

Theorem 5 ([5, Theorem 3.5.1, p. 135]). Suppose that n is an odd prime and n− 1 = 2st, where
t is odd. If a is not divisible by n then,{

either at ≡ 1 (mod n)
or a2it ≡ −1 (mod n) for some i with 0 ≤ i ≤ s− 1

(2)

The following algorithm was discovered by Rabin [6] in 1980 as a probabilistic extension of Miller’s
[7] deterministic test in 1975.

Algorithm 2: Miller-Rabin Test
Input: Odd number n ∈ N≥5
Output: Whether n is “Composite” or “Probably Prime”

1 Write n = 1 + 2st with t odd (we can repeatedly divide n− 1 by 2 until we reach an odd t)
2 Select a ∈ [2, n− 2] uniformly at random
3 b← at (mod n)
4 if b = 1 or b = n− 1 (i.e b ≡ −1 (mod n)) then return “Probably Prime”
5 for i from 1 to s− 1 do
6 b← b2 (mod n)
7 if b = n− 1 then return “Probably Prime”

return “Composite”
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Whenever n is prime, the algorithm will return “probably prime” on Line 4. Whenever n is
composite, much like with the Fermat test, we want to determine a bound on how often the
algorithm be tricked into returning “probably prime”. Let n be a composite number. We call a a
witness (or strong witness) to the compositeness of n if a violates the conditions in Equation (2)
(and the algorithm is lead to correctly return “composite”). Then,

Theorem 6 ([6, Theorem 1]). For every composite n > 4, there are at least 3
4(n− 1) witnesses to

the compositeness of n

Theorem 6 implies that, even including the Carmichael numbers, our algorithm will return “com-
posite” with success probability at least 3

4 . Further, we can improve this probability by running k
iterations of the Miller-Rabin test. If the algorithm returns “composite” in any of the k iterations,
then our input must be composite. To that end, we can attain a success probability of at least
1−

(
1
4

)k
.

Theorem 7. If n is prime, then the Miller-Rabin test returns “possibly prime” with probability 1.
If n is composite, then the Miller-Rabin test returns “composite” with probability at least 1−

(
1
4

)k
,

where k is the number of repeated iterations of the algorithm.

Finally, the time complexity of the Miller-Rabin test is similar to Fermat’s test. The modular
exponentiation on Lines 3 and 6 have time complexity at most O(logn ·M(logn))

Theorem 8. The Miller-Rabin test uses O(k · logn ·M(logn)) word operations

2.3 Solovay-Strassen Test

Let p be an odd prime, and a an integer, the Legendre symbol is defined as:

(
a

p

)
:=


1 if gcd(a, p) = 1 and there exists x such that a ≡ x2 (mod p)
−1 if gcd(a, p) = 1 and a is not a square mod p

0 if gcd(a, p) 6= 1
(3)

For arbitrary odd n, the Jacobi symbol generalizes the Legendre symbol. Suppose n = pα1
1 pα2

2 . . . pαk
k

is the prime factorization of n, then the Jacobi symbol is defined as:(
a

n

)
:=
(
a

p1

)α1 ( a
p2

)α2

. . .

(
a

pk

)αk

(4)

where on the right, we are evaluating Legendre symbols.

Theorem 9 ([8, p. 29-31]). For arbitrary a, n ∈ Z, the Jacobi symbol can be computed in O ((log a) (logn))
time.

Our next test is based on the following primality condition.

Theorem 10 (Euler’s Criterion [9, Theorem 83, p. 69]). Let p be an odd prime and a an integer
coprime to p, then (

a

p

)
≡ a

p−1
2 (mod p) (5)
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Algorithm 3: Solovay-Strassen Test [10]
Input: Odd number n ∈ N≥5
Output: Whether n is “Composite” or “Probably Prime”

1 Select a ∈ [2, n− 2] uniformly at random
2 if gcd(a, n) 6= 1 then return “Composite”
3 b←

(
a
n

)
4 if a

n−1
2 ≡ b (mod n) then return “Possibly Prime”

else return “Composite”

Much like before, whenever n is prime, the algorithm will correctly return “Possibly Prime”. For
composite n, first we define Gn = {u ∈ Z×

n | u
n−1

2 ≡
(
u
n

)
(mod n)}. Then, Gn ≤ Z×

n and so if
Gn 6= Z×

n , then |Gn| ≤ 1
2 |Z

×
n |. That is, the algorithm will correctly identify that n is composite

with probability at least 1
2 .

Theorem 11 ([10]). If n is prime, then the Solovay-Strassen test returns “possibly prime” with
probability 1. If n is composite, then the Solovay-Strassen test returns “composite” with probability
at least 1−

(
1
2

)k
, where k is the number of repeated iterations of the algorithm.

Finally, a single iteration of the Solovay-Strassen test takes O(logn·M(logn)) time since Theorem 9
bounds the time complexity of Line 3 and the analysis for Line 4 is exactly the same as before.

Theorem 12 ([10]). The Solovay-Strassen test has time complexity O(k · logn ·M(logn))

2.4 Lucas & Frobenius Tests

Let f(x) = x2 − ax+ b where a, b are non-zero integers with D = a2 − 4b (called the discriminant)
non-square. For j ≥ 0, let

Uj = Uj(a, b) = xj − (a− x)j

x− (a− x) (mod f(x)) (6)

Vj = Vj(a, b) = xj + (a− x)j (mod f(x)) (7)

The sequences (Uj)j≥0, (Vj)j≥0 are called Lucas sequences with parameters (a, b) [5, 11]. In fact,
the sequences are integral and both satisfy the recurrence relation

Uj = aUj−1 − bUj−2, Vj = aVj−1 − bVj−2

with initial values
U0 = 0, U1 = 1, V0 = 2, V1 = a

Example 2. One may recognize the recurrences look similar to that of the Fibonacci sequence.
Indeed, we can recover the Fibonacci sequence through (Uj(1,−1))j≥0.

The main testing condition for the following two tests will be the following:

Theorem 13 ([5, Theorem 3.6.3, p. 143]). Let (Uj) be defined as above with parameters (a, b) and
D non-square. If p is prime and gcd(p, 2abD) = 1, then

U
p−
(

D
p

) ≡ 0 (mod p) (8)

(where
(
D
p

)
is the Legendre symbol defined in Section 2.3)
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To compute Uj , we’ll use the following identities:

Lemma 2 ([5]). Let (Uj), (Vj) be defined as above with parameters (a, b) and D non-square, then

Uj = D−1 (2Vj+1 − aVj) (9)

Further, let A = a2b−1 − 2, then

U2j(a, b) = abj−1Uj(A, 1) (10)

Equation (9) tells us that can retrieve (Uj) by computing (Vj) and Equation (10) tells us that we
can compute the sequence in a doubling fashion. Combining the two equations we get:

U2j(a, b) = abj−1(A2 − 4)−1(2Vj+1(A, 1)−AVj(A, 1))
= abj−1(a4b−2 − 4a2b−1)−1(2Vj+1(A, 1)−AVj(A, 1))
= abj−1(a2b−2D)−1(2Vj+1(A, 1)−AVj(A, 1))
= (aD)−1bj+1(2Vj+1(A, 1)−AVj(A, 1))

(11)

Theorem 14 ([12]). There exists an algorithm to compute the sequence (Vn) with time complexity
O(logn ·M(logn)) using the doubling technique described above.

Let’s rephrase Theorem 13 using Equation (11):

Theorem 15. Let (Uj), (Vj) be defined as above with parameters (a, b) and D non-square. Let
A = a2b−1 − 2. If p is prime and gcd(p, 2abD) = 1, then

2V 1
2

(
p−
(

D
p

))
+1(A, 1) ≡ AV 1

2

(
p−
(

D
p

))(A, 1) (mod p) (12)

This gives us the following algorithm:

Algorithm 4: Lucas Probable Prime Test
Input: Odd n ∈ N≥5, a, b,D ∈ Z, where D = a2 − 4b non-square
Output: Whether n is “Composite” or “Probably Prime”

1 A← a2b−1 − 2
2 if 2V 1

2 (n−( D
n ))+1(A, 1) ≡ AV 1

2 (n−( D
n ))(A, 1) (mod n) then return “Probably Prime”

else return “Composite”

The Frobenius probable prime test is an extension of the Lucas Probable Prime test but performs
one more computation.

Theorem 16 ([5, Theorem 3.6.8, p .148]). Let n be a composite number, (Uj), (Vj) be Lucas
sequences with parameters (a, b), D non-square, and A = a2b−1 − 2. We call n a Frobenius
pseudoprime with respect to (a, b) if and only if

2V 1
2 (n−( D

n ))+1(A, 1) ≡ AV 1
2 (n−( D

n ))(A, 1) (mod n) (13)

and also
b

(n−1)
2 V 1

2 (n−( D
n ))(A, 1) ≡ 2 (mod n) (14)
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This gives us a natural extension to the Lucas probable prime test:

Algorithm 5: Frobenius Probable Prime Test
Input: Odd n ∈ N≥5, a, b,D ∈ Z, where D = a2 − 4b non-square
Output: Whether n is “Composite” or “Probably Prime”

1 A← a2b−1 − 2
2 if 2V 1

2 (n−( D
n ))+1(A, 1) 6≡ AV 1

2 (n−( D
n ))(A, 1) (mod n) then return “Composite”

3 B ← b
(n−1)

2 (mod n)
4 if BV 1

2 (n−( D
n ))(A, 1) ≡ 2 (mod n) then return “Probably Prime”

else return “Composite”

Theorem 17 ([5]). The Lucas probable prime test and Frobenius probable prime tests both have
time complexity O(logn ·M(logn)).

We note however that the Lucas probable prime test will take around twice the time compared a
Fermat (or Miller-Rabin) test, since it takes O(logn ·M(logn)) to compute each V 1

2 (n−( D
n ))+1(A, 1)

and V 1
2 (n−( D

n ))(A, 1). In that vein, the Frobenius prime test will take three times the time, since

it must also compute b
(n−1)

2 . (say, using repeated squaring)

Let (a, b) be the parameters to a Lucas sequence and n a composite number, we call n a Lucas
pseudoprime with respect to parameters (a, b) if it satisfies Equation (12). Baillie and Wagstaff
showed that Lucas pseudoprimes are relatively rare:

Theorem 18 ([13, Theorem 6]). For fixed a, b, there is a constant C(x) so that the number of
Lucas pseudoprimes less than x is bounded by x exp(−C(x)

√
log x log log x).

In both tests above, we are given the parameters (a, b). Baillie and Wagstaff [13] suggest two
methods for finding (a, b):

(A) Let D be the first element of the sequence 5,−7, 9,−11, 13, . . . (i.e. Odd numbers with
alternating signs, except −3) for which

(
D
n

)
= −1. Let a = 1 and b = 1−D

4

(B) Let D be the first element of the sequence 5, 9, 13, 17, 21, . . . for which
(
D
n

)
= −1. Let a be

the least odd number exceeding
√
D and b = a2−D

4

They show that on average, less than 2 values must be tried for D.

Finally, they recommend a mixed probable prime test algorithm that makes no mistakes for any
n < 25 · 109:

Algorithm 6: Baillie-Wagstaff Probable Prime Test
Input: Odd n ∈ N≥5
Output: Whether n is “Composite” or “Probably Prime”

1 Run the Miller-Rabin test on n with a = 2. If the test returns “Composite” then return
“Composite”

2 Choose parameters (a, b) using method A or B above.
3 Run n on the strong version of the Lucas probable prime test and return the result. The

idea is similar that of how we transformed the Fermat test into the Miller-Rabin test using
Theorem 5
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The individual steps of this algorithm are just subroutine calls to our previous algorithms. Hence,
the time complexity of this algorithm is still O(logn ·M(logn)).

3 A Deterministic Algorithm
We’ll now describe a deterministic algorithm created by Agrawal, Kayal, and Saxena in 2002 [14].
The motivating theorem for this algorithm is the following:

Theorem 19 ([14, Lemma 2.1]). Let a ∈ Z, n ∈ N, n ≥ 2 with gcd(a, n) = 1. Then, n is prime if
and only if

(x+ a)n ≡ xn + a (mod n) (15)

(where x is an indeterminate)

We’ll briefly justify this. First, we can write: (x+ a)n =
∑n
k=0

(n
k

)
an−kxk. Then, when n is prime,

then for all 0 < k < n, n divides the numerator of
(n
k

)
(mod n):(

n

k

)
= n · (n− 1) · . . . (n− k + 1)

k · (k − 1) . . . 1 ≡ 0 (mod n)

And, when n is composite, let p be the smallest prime factor and let k = n
p . Then,(

n

p

)
= n · (n− 1) · . . . (n− k + 1)

p · (p− 1) . . . 1 = k · (n− 1) · . . . (n− k + 1)
(p− 1)! 6≡ 0 (mod n)

This characterizes the prime numbers and one can verify the primality of any number n simply by
choosing a and running through Equation (15). However, this will take an exponential amount of
time since this would require expanding (x+ a)n. Instead, we will evaluate Equation (15) over the
ring Zn[x]

/
(xr − 1) and we write this as:

(x+ a)n ≡ xn + a (mod xr − 1, n) (16)

Then, the time complexity is bounded by r.

Lemma 3 ([14]). We can choose r that is polynomial in n. In particular, there exist a r ≤
max{3,

⌈
log5 n

⌉
} such that or(n) > log2 n

or(n) is the order of n modulo r, i.e. it is smallest k such that nk ≡ 1 (mod r). We will see that
this condition will be required for the algorithm. The lemma tells us that we can perform our
proposed algorithm using a polynomial amount of time by choosing r appropriately.

What remains is to show that the congruence in Equation (16) implies the congruence in Equa-
tion (15). We are left in a similar situation as with the probable prime tests. While the implication
certainly holds for primes, it will also hold for n that is composite. However, the authors show that
if we can show that Equation (16) holds for a class of numbers a, then the composite number must
be a prime power.

Theorem 20 ([14]). Let n be an odd integer and r be the smallest integer such that or(n) > log2 n.
Suppose that

(a) n is coprime will all primes ≤ r
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(b) (x+ a)n ≡ xn + a (mod xr − 1, n) for all 1 ≤ a <
√
φ(r) logn. (where φ(r) is Euler’s totient

function)

Then, n is a prime power.

This gives us the following algorithm:

Algorithm 7: AKS Primality Test [14]
Input: Integer n > 1
Output: Whether n is “Composite” or “Prime”

1 if n = ab for a ∈ N and b > 1 then return “Composite”
2 Let r be the smallest number such that or(n) > log2 n
3 if gcd(a, n) 6= 1 for any a ≤ r then return “Composite”
4 if n ≤ r then return “Prime”
5 for a = 1 to

⌊√
φ(r) logn

⌋
do

6 if (x+ a)n 6≡ xn + a (mod xr − 1, n) then return “Composite”
7 return “Prime”

Theorem 21 ([14]). The AKS Primality Test returns “Prime” if and only if n is prime.

Suppose n is prime power, then we return “Composite” on Line 1. Line 2 selects an r as in
Theorem 20 and if we violate either of the assumptions in Line 3 or 6, then we return “Composite”.
Finally, if we make it to Line 7, then by Theorem 20, n is a prime power, but since b > 1 in Line
1, it must be the case that n is a prime.

Theorem 22 ([14]). The time complexity of the AKS Primality Test is Õ(log10.5 n)

(Õ(f(n)) is shorthand for O(f(n) logk(f(n))) for some k)

For Line 1, b < logn + 1, so for each b we can use binary search to determine the existence of
an integer a so that n = ab. This will give the naïve bound of Õ(log4 n). Gathen and Gerhard
improves this primarily using Newton Iteration to tighten the bound to the desired Õ(log3 n) time
[3, Exercise 9.44].

For Line 2, we can naïvely compute nk 6≡ 1 for k ≤ log2 n for successive values of r. Lemma 3 tells
us that r is bounded above by log5 n, so Line 2 has time complexity Õ(log7 n).

Line 3 consists of performing at most log5 n gcd computations. This has time complexity Õ(log7 n).

Finally, Lines 6 has time complexity Õ(r log2 n) and the computation is performed
√
φ(r) logn

times. In total, this is Õ(r
√
φ(r) log3 n) = Õ(r

3
2 log3 n) = Õ(log10.5 n), which dominates the

overall time complexity.

4 Maple Implementations
In this section, we implement the Fermat test and Miller-Rabin test using Maple. In particular, we’ll
perform some experiments with the implementations to illustrate the limitations of the tests, how
we can overcome them, and how well they stack up against the built-in Maple isprime function.

First we present the code:
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Listing 1: Fermat Test
1 # Returns true is n is "probably prime" and false otherwise
2 FermatTest := proc(n)
3 local a, b;
4 a := rand(2..(n - 2))();
5 b := a &^ (n-1) mod n;
6 return evalb(b = 1);
7 end:

Listing 2: Miller Rabin Test
1 # Returns true if n is "probably prime" and false otherwise
2 MillerRabinTest := proc(n)
3 local nn, s ,t, a, b, i;
4
5 # Write n = 1 + 2^s * t where t odd
6 nn := n - 1;
7 s := 0;
8 while (nn :: even) do s := s + 1; nn := nn / 2; end:
9 t := nn;

10
11 # Select random a \in [2, n-2]
12 a := rand(2..(n-2))();
13
14 # Check the first condition in Equation (2)
15 b := a &^ t mod n;
16 if (b = 1) or (b = n-1) then return true end if;
17
18 # Check the second condition in Equation (2)
19 for i from 1 to s-1 do
20 b := b &^ 2 mod n;
21 if (b = n - 1) then return true end if;
22 end:
23
24 return false;
25 end:

Recall that the motivation for improving the Fermat test was due to the existence of Carmichael
numbers. Our next two experiments will be focused on the results of running the Fermat and
Miller-Rabin tests on only the Carmichael numbers. We use the following theorem to generate
Carmichael numbers.

Theorem 23 ([15]). For k ≥ 1, the number (6k + 1)(12k + 1)(18k + 1) is a Carmichael number if
all 3 factors are prime.

For our first experiment, we want to see how many times the Fermat test fails to recognize a
Carmichael numbers as composite as compared to the Miller-Rabin test. The following code gen-
erates 10000 Carmichael numbers and runs them against the Fermat and Miller-Rabin tests.
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Listing 3: Experiment 1
1 counter := 0: # counts the number of times FermatTest fails to recognize a

↪→ composite number
2 counter2 := 0: # counts the number of times MillerRabinTest fails to recognize

↪→ a composite number
3 k := 1;
4 for i from 1 to 10000 do
5 # Generate the next Carmichael number according to the theorem
6 while (not (isprime(6*k + 1) and isprime(12*k + 1) and isprime(18*k + 1)))

↪→ do
7 k := k + 1;
8 end:
9 n := (6*k+1)*(12*k+1)*(18*k+1);

10
11 # update counters as necessary
12 if FermatTest(n) then counter := counter + 1; end if;
13 if MillerRabinTest(n) then counter2 := counter2 + 1; end if;
14
15 # increment to generate next Carmichael number
16 k := k + 1;
17 end:
18
19 # Print results
20 lprint(counter, counter2);

We find that the Fermat test fails all 10000 times, while the Miller-Rabin test fails only 994
times. This matches our expectations that the Fermat test performs badly on Carmichael numbers.
Further, this illustrates that the Miller-Rabin test is indeed an improvement on the Fermat test.

For our second experiment, we recall that we can improve the probability of success by simply
running each test on the same input multiple times. As such, we will run each test 10 times on the
same input. If the test identifies the input as composite any of the 10 times, then we report that
the number is composite.

Listing 4: Experiment 2
1 # ... initialize counter, counter2 and k as before ...
2 for i from 1 to 10000 do
3 # ... Generate Carmichael numbers as before ...
4 fermat := true;
5 millerRabin := true;
6 # Perform each test 10 times
7 for j from 1 to 10 do
8 fermat := fermat and FermatTest(n);
9 millerRabin := millerRabin and MillerRabinTest(n);

10 end;
11
12 # update counters as necessary
13 if fermat then counter := counter + 1; end if;
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14 if millerRabin then counter2 := counter2 + 1; end if;
15
16 k := k + 1; # increment to generate next Carmichael number
17 end:

Now, we find that the Fermat test still fails 9999 times, while the Miller-Rabin test succeeds in
recognizing all 10000 numbers as composite! This matches our expectations in Theorem 7.

Finally, for the first 106 odd numbers, we find that the Miller-Rabin test (run 10 times) is as good
as Maple’s built-in isprime function.

Listing 5: Experiment 3
1 counter := 0;
2 for n from 5 to 10^6 by 2 do
3 millerRabin := true;
4 # run Miller-Rabin 10 times on the input n
5 for i from 1 to 10 do
6 millerRabin := millerRabin and MillerRabinTest(n);
7 end:
8
9 # update the counter if the Miller-Rabin test produces a different result

↪→ from isprime()
10 if millerRabin <> isprime(n) then counter := counter + 1; end if;
11 end:
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